Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
AoB Plants ; 16(2): plae013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38601215

RESUMO

Plants function in symbiosis with numerous microorganisms, which might contribute to their adaptation and performance. In this study, we tested whether fungal strains in symbiotic interaction with roots of Celtica gigantea, a wild grass adapted to nutrient-poor soils in semiarid habitats, could improve the field performance of the agricultural cereal tritordeum (Triticum durum × Hordeum chilense). Seedlings of tritordeum were inoculated with 12 different fungal strains isolated from roots of Celtica gigantea that were first proved to promote the growth of tritordeum plants under greenhouse conditions. The inoculated seedlings were transplanted to field plots at two locations belonging to different climatic zones in terms of mean temperatures and precipitation in the Iberian Peninsula. Only one strain, Diaporthe iberica T6, had a significant effect on plant height, number of tillers and grain yield in one location. This result showed a substantial divergence between the results of greenhouse and field tests. In terms of grain nutritional quality, several parameters were differentially affected at both locations: Diaporthe T6, Pleosporales T7, Zygomycota T29 and Zygomycota T80 increased the content of total carotenoids, mainly lutein, in the colder location; whereas gluten proteins increased with several treatments in the warmer location. In conclusion, early inoculation of tritordeum plants with fungal symbionts had substantial beneficial effects on subsequent plant growth and development in the field. Regarding grain nutritional quality, the effect of inoculation was affected by the agroclimatic differences between both field locations.

2.
PLoS One ; 19(4): e0301018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574054

RESUMO

Drought and heat are the main abiotic constraints affecting durum wheat production. This study aimed to screen for tolerance to drought, heat, and combined stresses in durum wheat, at the juvenile stage under controlled conditions. Five durum wheat genotypes, including four landraces and one improved genotype, were used to test their tolerance to abiotic stress. After 15 days of growing, treatments were applied as three drought levels (100, 50, and 25% field capacity (FC)), three heat stress levels (24, 30, and 35°C), and three combined treatments (100% FC at 24°C, 50% FC at 30°C and 25% FC at 35°C). The screening was performed using a set of morpho-physiological, and biochemical traits. The results showed that the tested stresses significantly affect all measured parameters. The dry matter content (DM) decreased by 37.1% under heat stress (35°C), by 37.3% under severe drought stress (25% FC), and by 53.2% under severe combined stress (25% FC at 35°C). Correlation analyses of drought and heat stress confirmed that aerial part length, dry matter content, hydrogen peroxide content, catalase, and Glutathione peroxidase activities could be efficient screening criteria for both stresses. The principal component analysis (PCA) showed that only the landrace Aouija tolerated the three studied stresses, while Biskri and Hedhba genotypes were tolerant to drought and heat stresses and showed the same sensitivity under combined stress. Nevertheless, improved genotype Karim and the landrace Hmira were the most affected genotypes by drought, against a minimum growth for the Hmira genotype under heat stress. The results showed that combined drought and heat stresses had a more pronounced impact than simple effects. In addition, the tolerance of durum wheat to drought and heat stresses involves several adjustments of morpho-physiological and biochemical responses, which are proportional to the stress intensity.


Assuntos
Secas , Triticum , Triticum/genética , Estresse Fisiológico/genética , Resposta ao Choque Térmico/genética , Variação Genética
3.
Int J Biol Macromol ; 261(Pt 2): 129694, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281525

RESUMO

The lignin from tritordeum straw, a hybrid cereal from crossbreeding of durum wheat and wild barley, was isolated and chemically characterized. Its composition and structure were studied by analytical pyrolysis (Py-GC/MS), nuclear magnetic resonance spectroscopy (NMR), Derivatization Followed by Reductive Cleavage (DFRC) method, and gel permeation chromatography (GPC). The data revealed an enrichment of guaiacyl (G) units (H:G:S of 3:61:36), which had a significant impact on the distribution of inter-unit linkages. The predominant linkages were the ß-O-4' alkyl-aryl ethers (78 % of all linkages), with substantial proportions of condensed linkages such as phenylcoumarans (11 %), resinols (4 %), spirodienones (4 %), and dibenzodioxocins (2 %). Moreover, DFRC revealed that tridordeum straw lignin was partly acylated at the γ-OH with both acetates and p-coumarates. Acetates were principally attached to G-units, whereas p-coumarates were predominantly attached to S-units. Furthermore, and more importantly, tritordeum lignin incorporates remarkable amounts of a valuable flavone, tricin, exceeding 30 g per kilogram of straw. Given the diverse industrial applications associated with this high-value molecule, tritordeum straw emerges as a promising and sustainable resource for its extraction.


Assuntos
Grão Comestível , Flavonoides , Lignina , Lignina/química , Grão Comestível/química , Estrutura Molecular , Acetatos/análise
4.
AoB Plants ; 16(1): plad085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38204894

RESUMO

The devastating effects and extent of abiotic stress on cereal production continue to increase globally, affecting food security in several countries, including Tunisia. Heat waves and the scarcity of rainfall strongly affect durum wheat yields. The present study aims to screen for tolerance to combined water and heat stresses in durum wheat at the juvenile stage. Three combined treatments were tested, namely: T0 (100% field capacity (FC) at 24 °C), T1 (50% FC at 30 °C), and T2 (25% FC at 35 °C). The screening was carried out based on morphological, physiological, and biochemical criteria. The results showed that the combined stress significantly affected all the measured parameters. The relative water content (RWC) decreased by 37.6% under T1 compared to T0. Quantum yield (Fv/m) and photosynthetic efficiency (Fv/0) decreased under severe combined stress (T2) by 37.15% and 37.22%, respectively. Under T2 stress, LT increased by 63.7%. A significant increase in osmoprotective solutes was also observed, including proline, which increased by 154.6% under T2. Correlation analyses of the combination of water and heat stress confirm that the traits RWC, chlorophyll b content, Fv/m, proline content, Fv/0 and leaf temperature can be used as reliable screening criteria for the two stresses combined. The principal component analysis highlighted that Aouija tolerates the two levels of stresses studied, while the genotypes Karim and Hmira are the most sensitive. The results show that the tolerance of durum wheat to combined water and heat stress involves several adaptation mechanisms proportional to the stress intensity.

5.
Front Plant Sci ; 14: 1171882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251754

RESUMO

The development of low-gluten immunogenic cereal varieties is a suitable way to fight the increment of pathologies associated with the consumption of cereals. Although RNAi and CRISPR/Cas technologies were effective in providing low-gluten wheat, the regulatory framework, particularly in the European Union, is an obstacle to the short- or medium-term implementation of such lines. In the present work, we carried out a high throughput amplicon sequencing of two highly immunogenic complexes of wheat gliadins in a set of bread and durum wheat, and tritordeum genotypes. Bread wheat genotypes harboring the 1BL/1RS translocation were included in the analysis and their amplicons successfully identified. The number of CD epitopes and their abundances were determined in the alpha- and gamma-gliadin amplicons, including 40k-γ-secalin ones. Bread wheat genotypes not containing the 1BL/1RS translocation showed a higher average number of both alpha- and gamma-gliadin epitopes than those containing such translocation. Interestingly, alpha-gliadin amplicons not containing CD epitopes accounted for the highest abundance (around 53%), and the alpha- and gamma-gliadin amplicons with the highest number of epitopes were present in the D-subgenome. The durum wheat and tritordeum genotypes showed the lowest number of alpha- and gamma-gliadin CD epitopes. Our results allow progress in unraveling the immunogenic complexes of alpha- and gamma-gliadins and can contribute to the development of low-immunogenic varieties within precision breeding programs, by crossing or by CRISPR/Cas gene editing.

6.
Int J Biol Macromol ; 242(Pt 2): 124811, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37187416

RESUMO

The differences in the composition and structure of the lignins from straws of different oat (Avena sativa L.) varieties, planted in two seasons (winter and spring), were studied in detail by different analytical techniques such as pyrolysis coupled to gas chromatography-mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic resonance (2D-NMR), derivatization followed by reductive cleavage (DFRC), and gel permeation chromatography (GPC). Overall, the analyses revealed that oat straw lignins were enriched in guaiacyl (G; 50-56 %) and syringyl (S; 39-44 %) units, with relatively lower amounts of p-hydroxyphenyl (H; 4-6 %) units. The lignins also incorporated significant quantities of p-coumarates (8-14 % of total lignin units), which are acylating the γ-OH of the lignin side chains, and predominantly over the S units. Furthermore, oat straw lignins also incorporated considerable amounts of the flavone tricin (5-12 % of total lignin units). Interestingly, this study revealed that the lignin content and composition of the oat straws vary with genotype and planting season. Since p-coumarates and tricin are high-value aromatic compounds especially attractive from a biorefinery point of view, the information disclosed here is highly relevant to plant breeding programs aimed at developing functional foods and lignin modifications for improved biorefinery applications.


Assuntos
Avena , Lignina , Lignina/química , Estações do Ano , Melhoramento Vegetal , Espectroscopia de Ressonância Magnética
7.
AoB Plants ; 15(3): plad022, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37228421

RESUMO

Local genetic resources could constitute a promising solution to overcome drought stress. Thus, eight (8) durum wheat landraces and one improved variety were assessed for drought tolerance in pots under controlled conditions. Three water treatments were tested: control (100 % of the field capacity (FC)), medium (50 % FC) and severe (25 % FC) stress. The assessment was carried out at the seedling stage to mimic stress during crop set-up. Results showed that increased water stress led to a decrease in biomass and morpho-physiological parameters and an increase in antioxidant enzyme activities. Severe water stress decreased the chlorophyll fluorescence parameters, relative water content (RWC) and water potential of the investigated genotypes by 56.45, 20.58, 50.18 and 139.4 %, respectively. Besides, the phenolic compounds content increased by 169.2 % compared to the control. Catalase and guaiacol peroxidase activities increased 17 days after treatment for most genotypes except Karim and Hmira. A principal component analysis showed that the most contributed drought tolerance traits were chlorophyll fluorescence parameters, RWC and electrolyte conductivity. Unweighted pair group method with arithmetic mean clustering showed that the landraces Aouija, Biskri and Hedhba exhibited a higher adaptive response to drought stress treatments, indicating that water stress-adaptive traits are included in Tunisian landraces germplasm.

8.
J Agric Food Chem ; 71(11): 4477-4487, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36892583

RESUMO

Glyphosate has been the most widely used herbicide for decades providing a unique tool, alone or in mixtures, to control weeds on citrus in Veracruz. Conyza canadensis has developed glyphosate resistance for the first time in Mexico. The level and mechanisms of resistance of four resistant populations Rs (R1, R2, R3, and R4) were studied and compared with that of a susceptible population (S). Resistance factor levels showed two moderately resistant populations (R2 and R3) and two highly resistant populations (R1 and R4). Glyphosate translocation through leaves to roots was ∼2.8 times higher in the S population than in the four R populations. A mutation (Pro106Ser) in the EPSPS2 gene was identified in the R1 and R4 populations. Mutation in the target site associated with reduced translocation is involved in increased glyphosate resistance in the R1 and R4 populations; whereas for the R2 and R3 populations, it was only mediated by reduced translocation. This is the first study of glyphosate resistance in C. canadensis from Mexico in which the resistance mechanisms involved are described in detail and control alternatives are proposed.


Assuntos
Conyza , Herbicidas , Conyza/genética , México , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética
9.
Pestic Biochem Physiol ; 191: 105371, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963940

RESUMO

Carduus acanthoides L. is mainly a range-land weed, but in the 2010s has begun to invade GM crop production systems in Córdoba (Argentina), where glyphosate and 2,4-D have been commonly applied. In 2020, C. acanthoides was found with multiple resistance to these two herbicides. In this study, the mechanisms that confer multiple resistance to glyphosate and 2,4-D, were characterized in one resistant (R) population of C. acanthoides in comparison to a susceptible (S) population. No differences in 14C-herbicide absorption and translocation were observed between R and S populations. In addition, 14C-glyphosate was well translocated to the shoots (∼30%) and roots (∼16%) in both R and S plants, while most of 14C-2,4-D remained restricted in the treated leaf. Glyphosate metabolism did not contribute to resistance of the R population; however, as corroborated by malathion pretreatment, the mechanism of resistance to 2,4-D was enhanced metabolism (63% of the herbicide) mediated by cytochrome P450 (Cyt-P450). No differences were found in baseline EPSPS activity, copy number, and/or gene expression between the R and S populations, but a Pro-106-Ser mutation in EPSPS was present in the R population. Multiple resistances in the R population of C. acanthoides from Argentina were governed by target site resistance (a Pro-106 mutation for glyphosate) and non-target site resistance (Cyt-P450-based metabolic resistance for 2,4-D) mechanisms. This is the first case of resistance to glyphosate and 2,4-D confirmed for this weed in the world.


Assuntos
Carduus , Herbicidas , Carduus/metabolismo , Resistência a Herbicidas/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , Herbicidas/farmacologia , Ácido 2,4-Diclorofenoxiacético/farmacologia
10.
Front Nutr ; 10: 1319888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38292700

RESUMO

Wheat-dependent exercise-induced anaphylaxis (WDEIA) is one of the most severe forms of wheat allergy. It occurs in patients when they exercise after ingesting wheat-containing foods. Nowadays, the only possible alternative for WDEIA patients is to avoid such foods. This study investigated the potential of six RNA of interference (RNAi) wheat lines with low-prolamin content as alternatives for WDEIA patients. For that purpose, a high performance-liquid chromatography (HPLC) analysis was performed to evaluate differences in gluten protein fractions among these lines. Next, western blots were conducted to measure the immunoglobulin E (IgE) reactivity to wheat proteins in sera from five WDEIA patients. Additionally, monoclonal antibodies (moAb) recognition sites and the IgE binding sites were searched in all peptides identified by LC-MS/MS after protein digestion. The results showed a 61.4%-81.2% reduction in the gliadin content of the RNAi lines, accompanied by an increase in their high-molecular weight (HMW) glutenin content compared to the wild type bread wheat line (WT). In all cases, the reduction in gliadin content correlated with a decrease in IgE reactivity observed in the sera of WDEIA patients, highlighting the E82 and H320 lines. These two RNAi lines exhibited a ≤90% reduction in IgE reactivity. This reduction could be attributed to an absence of IgE binding sites associated with α- and ω5-gliadins, which were present in the WT. Overall, these lines offer a potential alternative for foodstuff for individuals with WDEIA.

11.
Front Plant Sci ; 13: 935851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003813

RESUMO

Gluten proteins are responsible for the unique viscoelastic properties of wheat dough, but they also trigger the immune response in celiac disease patients. RNA interference (RNAi) wheat lines with strongly silenced gliadins were obtained to reduce the immunogenic response of wheat. The E82 line presents the highest reduction of gluten, but other grain proteins increased, maintaining a total nitrogen content comparable to that of the wild type. To better understand the regulatory mechanisms in response to gliadin silencing, we carried out a transcriptomic analysis of grain and leaf tissues of the E82 line during grain filling. A network of candidate transcription factors (TFs) that regulates the synthesis of the seed storage proteins (SSPs), α-amylase/trypsin inhibitors, lipid transfer proteins, serpins, and starch in the grain was obtained. Moreover, there were a high number of differentially expressed genes in the leaf of E82, where processes such as nutrient availability and transport were enriched. The source-sink communication between leaf and grain showed that many down-regulated genes were related to protease activity, amino acid and sugar metabolism, and their transport. In the leaf, specific proline transporters and lysine-histidine transporters were down- and up-regulated, respectively. Overall, the silencing of gliadins in the RNAi line is compensated mainly with lysine-rich globulins, which are not related to the proposed candidate network of TFs, suggesting that these proteins are regulated independently of the other SSPs. Results reported here can explain the protein compensation mechanisms and contribute to decipher the complex TF network operating during grain filling.

12.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35757438

RESUMO

Background: The consumption of wheat/gluten is associated with adverse reactions for human health. Gluten and fructans are identified as the major compounds triggering and worsening adverse reactions to wheat, which are increasing, and as a consequence, avoidance of gluten/wheat is the common strategy of many individuals of the western population. Although bread is a product of daily consumption, there is a lack of information on the gluten and fructan contents and the influence of artisanal or industrial processes. Objective: The aim of this study is to carry out a comparative characterization between artisan bakeries and hypermarkets in Spain for gluten and fructan contents in daily sold breads. Design: A total of 48 types of bread highly consumed in Spain sold in artisan bakeries (long fermentation) and hypermarkets (short fermentations) were selected for comparing the gluten and fructan contents. Methods such as reverse phase-high performance liquid chromatography (RP-HPLC), R5 monoclonal antibody (moAb), and fructans protocols were used for the quantification of these compounds. Results: Great variation for the content of gluten and fructans has been found between all bread categories. Although breads produced using long fermentation (artisan bakeries) contain significantly lower gluten, they have higher fructans than those using short fermentations (hypermarkets). Durum wheat breads had the lowest content of gluten. Moreover, spelt breads from artisan bakeries had the lowest content of fructans but not those from hypermarkets. Discussion: In this study, we report the comparative characterizarion of the breads of the Spanish market. These food products presented variation in the amount of gluten and fructans, ligated in most of the cases to the nature of the providers: artisan bakeries against hypermarkets. Depending on the type of bread, the differences for the daily consumption of gluten and fructan can be 4.5 and 20 times, respectively. Conclusions: We found strong differences for gluten and fructan contents among breads. These information may contribute to designing strategies to improve the management of gluten and fructans in bread.

13.
Foods ; 11(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35627010

RESUMO

Gluten proteins are responsible for the wheat breadmaking quality. However, gluten is also related to human pathologies for which the only treatment is a gluten-free diet (GFD). GFD has gained popularity among individuals who want to reduce their gluten intake. Tritordeum is a cereal species that originated after crossing durum wheat with wild barley and differs from bread wheat in its gluten composition. In this work, we have characterized the immunogenic epitopes of tritordeum bread and results from a four-phase study with healthy adults for preferences of bread and alterations in the gut microbiota after consuming wheat bread, gluten-free bread, and tritordeum bread are reported. Tritordeum presented fewer peptides related to gluten proteins, CD-epitopes, and IgE binding sites than bread wheat. Participants rated tritordeum bread higher than gluten-free bread. Gut microbiota analysis revealed that the adherence to a strict GFD involves some minor changes, especially altering the species producing short-chain fatty acids. However, the short-term consumption of tritordeum bread does not induce significant changes in the diversity or community composition of the intestinal microbiota in healthy individuals. Therefore, tritordeum bread could be an alternative for healthy individuals without wheat-related pathologies who want to reduce their gluten consumption without harming their gut health.

14.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884880

RESUMO

The α-gliadins of wheat, along with other gluten components, are responsible for bread viscoelastic properties. However, they are also related to human pathologies as celiac disease or non-celiac wheat sensitivity. CRISPR/Cas was successfully used to knockout α-gliadin genes in bread and durum wheat, therefore, obtaining low gluten wheat lines. Nevertheless, the mutation analysis of these genes is complex as they present multiple and high homology copies arranged in tandem in A, B, and D subgenomes. In this work, we present a bioinformatic pipeline based on NGS amplicon sequencing for the analysis of insertions and deletions (InDels) in α-gliadin genes targeted with two single guides RNA (sgRNA). This approach allows the identification of mutated amplicons and the analysis of InDels through comparison to the most similar wild type parental sequence. TMM normalization was performed for inter-sample comparisons; being able to study the abundance of each InDel throughout generations and observe the effects of the segregation of Cas9 coding sequence in different lines. The usefulness of the workflow is relevant to identify possible genomic rearrangements such as large deletions due to Cas9 cleavage activity. This pipeline enables a fast characterization of mutations in multiple samples for a multi-copy gene family.


Assuntos
Edição de Genes , Genes de Plantas , Genômica , Gliadina/genética , Triticum/metabolismo , Sistemas CRISPR-Cas , Biologia Computacional , Genoma de Planta , Mutação INDEL , Análise de Sequência de DNA , Triticum/genética
15.
Nutrients ; 13(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34960101

RESUMO

Celiac disease (CD) is a genetically predisposed, T cell-mediated and autoimmune-like disorder caused by dietary exposure to the storage proteins of wheat and related cereals. A gluten-free diet (GFD) is the only treatment available for CD. The celiac immune response mediated by CD4+ T-cells can be assessed with a short-term oral gluten challenge. This study aimed to determine whether the consumption of bread made using flour from a low-gluten RNAi wheat line (named E82) can activate the immune response in DQ2.5-positive patients with CD after a blind crossover challenge. The experimental protocol included assessing IFN-γ production by peripheral blood mononuclear cells (PBMCs), evaluating gastrointestinal symptoms, and measuring gluten immunogenic peptides (GIP) in stool samples. The response of PBMCs was not significant to gliadin and the 33-mer peptide after E82 bread consumption. In contrast, PBMCs reacted significantly to Standard bread. This lack of immune response is correlated with the fact that, after E82 bread consumption, stool samples from patients with CD showed very low levels of GIP, and the symptoms were comparable to those of the GFD. This pilot study provides evidence that bread from RNAi E82 flour does not elicit an immune response after a short-term oral challenge and could help manage GFD in patients with CD.


Assuntos
Pão , Doença Celíaca/imunologia , Dieta Livre de Glúten , Gliadina/genética , Gliadina/imunologia , Glutens/imunologia , Interferência de RNA , Triticum/genética , Triticum/imunologia , Adulto , Doença Celíaca/genética , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Interferência de RNA/imunologia , Triticum/química , Adulto Jovem
16.
Front Immunol ; 12: 678400, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220824

RESUMO

Background: We have focused on the alteration of the PD-1/PD-L1 pathway in celiac disease and discussed the roles of the PD1 pathway in regulating the immune response. We explored the idea that the altered mRNA splicing process in key regulatory proteins could represent a novel source to identify diagnostic, prognostic, and therapeutic targets in celiac disease. Methods: We characterized the PD1 mRNA variants' profile in CD patients and in response to gluten peptides' incubation after in vitro experiments. Total RNA from whole blood was isolated, and the coding region of the human PD-1 mRNA was amplified by cDNA PCR. Results: PCR amplification of the human PD-1 coding sequence revealed an association between the over-expression of the sPD-1 protein and the PD-1Δex3 transcript in celiac disease. Thus, we have found three novel alternative spliced isoforms, two of which result in a truncated protein and the other isoform with a loss of 14 aa of exon 2 and complete exon 3 (Δ3) which could encode a new soluble form of PD1 (sPD-1). Conclusions: Our study provides evidence that dietary gluten can modulate processes required for cell homeostasis through the splicing of pre-mRNAs encoding key regulatory proteins, which represents an adaptive mechanism in response to different nutritional conditions.


Assuntos
Processamento Alternativo , Doença Celíaca/genética , Regulação da Expressão Gênica , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/metabolismo , Biomarcadores , Doença Celíaca/diagnóstico , Doença Celíaca/metabolismo , Doença Celíaca/terapia , Criança , Citocinas/biossíntese , Suscetibilidade a Doenças , Feminino , Humanos , Imuno-Histoquímica , Interferon gama/metabolismo , Masculino , Peptídeos/imunologia , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Prognóstico , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Transdução de Sinais
17.
Front Plant Sci ; 12: 663653, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995459

RESUMO

Celiac Disease (CD) is an autoimmune disorder that affects approximately 1% of the worldwide population. The α-gliadins of wheat contain the 33-mer peptide, the most active peptide in CD both in adults and pediatric patients. In this study, we have characterized the variants and expression profile of an α-gliadins amplicon, harboring the 33-mer peptide, in two low-gliadin RNAi wheat lines, under two different Nitrogen (N) treatments. We estimated that the amplicon expands 45 different α-gliadin variants with high variability due to length, randomly distributed SNPs, and the presence of encoded CD epitopes. Expression of this amplicon is reduced in both RNAi lines in comparison to the wild type. High N treatment significantly increases transcripts of the amplicon in the wild type, but not in the transgenic lines. Classification of α-gliadin variants, considering the number of epitopes, revealed that amplicon variants containing the full complement of 33-mer peptide were affected by N treatment, increasing their expression when N was increased. Line D793 provided higher and more stable silencing through different N fertilization regimes, expressing fewer CD epitopes than D783. Results of this study are important for better understanding of RNAi α-gliadin silencing in response to N treatments, and for undertaking new strategies by RNAi or CRISPR/Cas toward obtaining new varieties suitable for people suffering gluten intolerances.

18.
New Phytol ; 231(2): 679-694, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864680

RESUMO

Cutin and suberin are lipid polyesters deposited in specific apoplastic compartments. Their fundamental roles in plant biology include controlling the movement of gases, water and solutes, and conferring pathogen resistance. Both cutin and suberin have been shown to be present in the Arabidopsis seed coat where they regulate seed dormancy and longevity. In this study, we use accelerated and natural ageing seed assays, glutathione redox potential measures, optical and transmission electron microscopy and gas chromatography-mass spectrometry to demonstrate that increasing the accumulation of lipid polyesters in the seed coat is the mechanism by which the AtHB25 transcription factor regulates seed permeability and longevity. Chromatin immunoprecipitation during seed maturation revealed that the lipid polyester biosynthetic gene long-chain acyl-CoA synthetase 2 (LACS2) is a direct AtHB25 binding target. Gene transfer of this transcription factor to wheat and tomato demonstrated the importance of apoplastic lipid polyesters for the maintenance of seed viability. Our work establishes AtHB25 as a trans-species regulator of seed longevity and has identified the deposition of apoplastic lipid barriers as a key parameter to improve seed longevity in multiple plant species.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Sementes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Sci Food Agric ; 101(8): 3508-3517, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33275797

RESUMO

BACKGROUND: The ingestion of wheat and other cereals are related to several gut disorders. The specific components responsible for non-celiac wheat-sensitivity (NCWS) may include gluten and other compounds. Tritordeum is a new cereal derived from crossing durum wheat with a wild barley species, which differs from bread wheat in its gluten composition. In the present work, we examined the response of NCWS patients to tritordeum bread Gastrointestinal symptoms as well as tritordeum acceptability, gluten immunogenic peptides excretion, and the composition and structure of the intestinal microbiota were evaluated. RESULTS: Gastrointestinal symptoms of the subjects showed no significant change between the gluten-free bread and the tritordeum bread. Participating subjects rated tritordeum bread higher than the gluten-free bread. Analysis of the bacterial gut microbiota indicated that tritordeum consumption does not alter the global structure and composition of the intestinal microbiota, and only a few changes in some butyrate-producing bacteria were observed. CONCLUSIONS: All the results derived from acceptability, biochemical and microbiological tests suggest that tritordeum may be tolerated by a sub-set of NCWS sufferers who do not require strict exclusion of gluten from their diet. © 2020 Society of Chemical Industry.


Assuntos
Pão/análise , Doença Celíaca/dietoterapia , Doença Celíaca/microbiologia , Microbioma Gastrointestinal , Poaceae/metabolismo , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Dieta Livre de Glúten , Feminino , Glutens/análise , Glutens/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Poaceae/química , Triticum/imunologia
20.
Front Plant Sci ; 11: 553948, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193482

RESUMO

Different Lolium species, common weeds in cereal fields and fruit orchards in Chile, were reported showing isolated resistance to the acetyl CoA carboxylase (ACCase), acetolactate synthase (ALS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibiting herbicides in the late 1990s. The first case of multiple resistance to these herbicides was Lolium multiflorum found in spring barley in 2007. We hypothesized that other Lolium species may have evolved multiple resistance. In this study, we characterized the multiple resistance to glyphosate, diclofop-methyl and iodosulfuron-methyl-sodium in Lolium rigidum, Lolium perenne and Lolium multiflorum resistant (R) populations from Chile collected in cereal fields. Lolium spp. populations were confirmed by AFLP analysis to be L. rigidum, L. perenne and L. multiflorum. Dose-response assays confirmed multiple resistance to glyphosate, diclofop-methyl and iodosulfuron methyl-sodium in the three species. Enzyme activity assays (ACCase, ALS and EPSPS) suggested that the multiple resistance of the three Lolium spp. was caused by target site mechanisms, except the resistance to iodosulfuron in the R L. perenne population. The target site genes sequencing revealed that the R L. multiflorum population presented the Pro-106-Ser/Ala (EPSPS), Ile-2041-Asn++Asp-2078-Gly (ACCase), and Trp-574-Leu (ALS) mutations; and the R L. rigidum population had the Pro-106-Ser (EPSPS), Ile-1781-Leu+Asp-2078-Gly (ACCase) and Pro-197-Ser/Gln+Trp-574-Leu (ALS) mutations. Alternatively, the R L. perenne population showed only the Asp-2078-Gly (ACCase) mutation, while glyphosate resistance could be due to EPSPS gene amplification (no mutations but high basal enzyme activity), whereas iodosulfuron resistance presumably could involve non-target site resistance (NTSR) mechanisms. These results support that the accumulation of target site mutations confers multiple resistance to the ACCase, ALS and EPSPS inhibitors in L. multiflorum and L. rigidum from Chile, while in L. perenne, both target and NTSR could be present. Multiple resistance to three herbicide groups in three different species of the genus Lolium in South America represents a significant management challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...